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Multi-Prefix Trie: a New Data Structure for
Designing Dynamic Router-Tables

Sun-Yuan Hsieh Member, IEEE, Yi-Ling Huang, and Ying-Chi Yang

Abstract—IP lookup affects the speed of an incoming packet
and the time required to determine which output port the packet
should be sent to; hence, it plays an important role in the design
of router-tables. In this paper, we propose a new data structure,
called a multi-prefix trie, for use in designing dynamic router-
tables. One key feature of our data structure is that each node can
store more than one prefix, which reduces the number of memory
accesses. When performing lookup, the structure can search
more prefixes in one node and may find the longest matching
prefix in an internal node rather than on a leaf. Moreover, when
updating the router-table, it does not need to reconstruct the
table. As a by-product, the proposed data structure minimizes
the time required for dynamic router-table operations, including
lookup, insertion, and deletion, and also reduces the number of
memory accesses. We report the results of experiments conducted
to compare the proposed data structure with other structures
using the benchmark IPv4 prefix database AS4637 with 219,581
prefixes.

Index Terms—Classless inter domain routing, dynamic router
tables, IP address lookup, longest matching prefix, multi-prefix
trie.

I. INTRODUCTION

The IP addresses of the classful routing protocol∗ are often
fully utilized, but Classless Inter Domain Routing (CIDR) [11]
provides a way to alleviate the problem. The routing entries
of CIDR are pairs of (p/l, o), where p = p0p1 . . . pl−1* is
a prefix formed of binary bits; l is the length of p, which is
at most 32 bits for IPv4 [19] and 128 bits for IPv6 [8]; and
o is an output port identifier. The prefix length of CIDR is
variable; hence it can provide more IP addresses than classful
routing.

An internet router classifies incoming packets into flows
based on information contained in the packet headers and a
table of (classification) rules called the router-table (equiva-
lently, rule-table), which contains pairs of (p/l, o). The rules
are used to find the best matching prefix and determine the
output port the packet should be sent to. Currently, the best
known prefix matching scheme in the Internet protocol is the
so-called longest prefix matching scheme, which compares all
the prefixes in the routing table to the destination address
bit-by-bit, and then finds the longest one among the set of
matching prefixes. When a packet with a destination address
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∗The classful routing protocol has four address classes: A, B, and C have
8-bit, 16-bit, 24-bit network-addresses, respectively, and D is for multicast.

d arrives, we can find the pair of (p/l, o) in the router table if p
with length l matches d, and then send the packet to the output
o. However, this matching scheme causes a major bottleneck
in the router. Clearly, the performance of the longest prefix
matching algorithm plays an important role in routing devices.

Since static router-tables require a prohibitive update time to
reconstruct a table, they are only suitable for routing environ-
ments without insertion and deletion; therefore, we concentrate
on dynamic router-tables to support real-time instant updates.
Interested readers may refer to [21] for more information about
static router-tables, and to [25] for further details about static
and dynamic router-tables. In general, four main factors affect
the performance of a router-table.

1) Lookup speed: The amount of Internet traffic is so large
that the speed of determining which output port an
incoming packet should be forwarded to is critical.

2) Space requirement: The space requirement must be
small so that the structure of the router-table can be
stored in the memory.

3) Scalability: The structure of the forthcoming IPv6 rout-
ing protocol can be applied to the IPv6 router. The
router-table must have the scalability to deal with routing
entries for both IPv4 and IPv6.

4) Update speed: Since variability is a key feature of the In-
ternet, router-table entries usually vary such that updates
(insertion and deletion) occur frequently. Each operation
must be performed efficiently without reconstructing the
router table.

Designing router-tables based on different data structures
has received a great deal of attention in recent years [2]–[5],
[7], [10], [15]–[18], [20], [22]–[24], [26]–[29], [31], [33], [34].
One line of research focuses on designing dynamic router-
tables that manipulate prefixes using contiguous intervals [4],
[5], [15], [26], [28], [29], [34]. For instance, when the length
of the IP address equals 5, the interval representing the
prefix p=0* is [00000, 01111] = [0, 15]. An interval filter
[u, v] matches the destination address D iff u ≤ D ≤ v.
Consequently, the longest matching prefix problem reduces to
finding the shortest interval containing the destination address.
Another line of research tries to find hardware solutions. To
this end, Sarang Dharmapurikar et al. [9] employ Bloom filters
for matching the longest prefix. Jiang et al. [13] propose an
SRAM-based parallel multi-pipeline architecture for terabit IP
lookup. Sieteng Soh et al. [32] utilize lexicographic ordered
prefixes to reduce the off-line construction time of the Full Ex-
pansion Compression (FEC) algorithm [6] and the Compressed
Next-Hop Array/Code Word Array (CNHA/CWA) [12].
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Numerous trie-based router-table schemes have also been
proposed [3], [18], [20], [22]–[24], [29]–[31], but they suffer
from the following shortcomings.

I. Additional memory space is required because some
nodes in these structures do not contain any routing
information [18], [20], [22]–[24], [31].

II. Each node stores exactly one prefix, so accessing a node
can only match one prefix. Thus, router-table operations,
such as lookup, insertion, and deletion take a great deal
of time [3], [18], [20], [31].

III. Lookup operations in these structures must compare the
prefixes stored in the nodes from the root to a leaf,
even if the longest matching prefix is in some internal
node. This will increase the time required for lookup
operations [3], [18], [20], [22]–[24], [29]–[31].

IV. The router-tables in [18], [20] are static, so they cannot
be updated in a timely manner.

Motivated by the above observations, we propose a new
data structure called a multi-prefix trie for designing dynamic
router-tables. In the proposed data structure, all the nodes
keep the corresponding routing information; hence each node
can store more than one prefix, which reduces the number of
memory accesses required for router-table operations. More-
over, a multi-prefix trie can return the longest matching prefix
immediately when it is found in some internal node. This is
quite different from the other data structures, which must go
to a leaf in order to return the discovered longest matching
prefix. The above advantages reduce the time required for
router-table operations. In addition, based on the multi-prefix
trie, we propose another data structure, called the index multi-
prefix trie, which combines the index table with the multi-
prefix trie to reduce the height of the trie and expedite router-
table operations. Note that the two proposed data structures
can be applied to both IPv4 and IPv6.

The remainder of this paper is organized as follows: Sec-
tion II introduces the proposed multi-prefix trie. The dynamic
router-table operations for the proposed data structures are
described in Section III. We discuss the index multi-prefix trie
and its operations in Section IV. The results of experiments
conducted to compare the proposed data structures with other
data structures are reported in Section V. We then summarize
our findings in Section VI.

II. DESIGNING DYNAMIC ROUTER-TABLES USING A

MULTI-PREFIX TRIE

In this section, we propose our data structure, called a multi-
prefix trie, for designing dynamic router-tables. The proposed
structure utilizes the Prefix-Tree (PT) defined in [3] as an
auxiliary sub-structure. Before describing the data structure,
we define some terms used throughout the paper. For a prefix
p = p0p1 . . . pl−1*, let p′ = p0p1 . . . pi* for 0 ≤ i ≤ l − 2
be a sub-prefix of p. The length of a prefix p, denoted
by len(p), is the number of non-∗ symbols; for example,
len(p0p1 . . . pl−1*) = l. The level of a node v in a rooted
tree, denoted by level(v), is the number of edges on the path
from the root to v. If the last edge on the path from the root
of the tree is (y, x), then y is the parent of x, and x is a child
of y.

A. Prefix-trees

Each node in a prefix-tree contains exactly one prefix, so
the size of the prefix-tree is equal to the size of the routing
table. As shown in Figure 1, each node contains a prefix and
two pointers pointing to successive tree nodes. The length of
the prefix must be greater than or equal to the level where
the prefix is located. Thus, in the figure, the level of the
node containing 1* is 1 and len(1*)=1. For convenience, we
use PT LOOKUP, PT INSERT and PT DELETE, to represent
the respective algorithms for lookup, insertion, and deletion
operations in prefix-trees in O(W ) time, where W is the length
of the IP address. The PT LOOKUP algorithm can find the
longest matching prefix [3].
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0*

01*
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1*

1101*

11011*

0 1

11011*

0 1

01*

0 1

1*

0 1

0110*

0 1

1101*

0 1

0*

Fig. 1. A prefix-tree

B. Multi-prefix tries

A trie is a rooted tree data structure. A k-stride Multi-
Prefix Trie (k-MPT), where k is the stride which is a positive
integer, contains two types of nodes, a primary node (p-node)
and a secondary node (s-node), which possess the following
properties:

P1. Each p-node v contains the following fields:

a) 0 ≤ t ≤ m is the number of prefixes stored in v,
where m = O(k).

b) The t prefixes, denoted by p1(v), p2(v), . . . , pt(v),
are stored in non-increasing order with
len(p1(v)) ≥ len(p2(v)) ≥ · · · ≥ len(pt(v)).

c) port(pi(v)), the output port of pi(v).
d) s pointer(v), a pointer points to a prefix-tree

PT composed of s-nodes, which store prefixes
of length at least k · level(v), but less than k ·
(level(v)+1)†. For convenience, the tree indicated
by s pointer(v) is called the PT of v.

e) The content of a p-node v can be represented sim-
ply as (t, p1(v), p2(v), . . . , pt(v), s pointer(v)).

P2. The stride k is the number of bits used by a p-node to
determine which branch to take. A p-node whose stride
is k has 2k children corresponding to the 2k possible

†The s-nodes in a PT of a p-node v store prefixes of length at least k ·
level(v), but less than k·(level(v)+1). This can be viewed as a classification
of prefixes according to their lengthes. There was another prefix partitioning
technique proposed in [15] in which the prefixes in each partition may be
represented using a dynamic router-table data structure.
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values for the k used bits. For ease of presentation,
we use child0(v), child1(v), . . ., child2k−1(v) to rep-
resent 2k children corresponding to 2k possible values
from 00 . . . 0︸ ︷︷ ︸

k

to 11 . . . 1︸ ︷︷ ︸
k

. Thus, if k = 2, there will

be four children, child0(v), child1(v), child2(v), and
child3(v), corresponding to 00, 01, 10, and 11, respec-
tively.

P3. A p-node with m prefixes is said to be full; otherwise, it
is non-full. An internal p-node is a full p-node that has
children, and an external p-node is a p-node without any
children. Note that an external p-node may be non-full.

P4. Let u and v be two consecutive p-nodes on a path in T .
If there are two prefixes pi(u) and pj(v) such that pj(v)
is a sub-prefix of pi(u), then level(u) ≤ level(v).

P5. Each s-node w has the following fields:

a) p(w), the prefix stored in w.
b) port(p(w)), the output port of the prefix stored in

w.
c) left(w), a pointer indicating the left s-node of w

if it exists; otherwise, the pointer is set as “null”.
d) right(w), a pointer indicating the right s-node of

w if it exists; otherwise, the pointer is set as “null”.

A p-node is described as empty if it does not contain any
prefix. Figure 2 illustrates a 2-MPT in which a, b, c, d, e, and f
are p-nodes. Assume that m = 5; hence, every p-node contains
at most five prefixes. The internal p-nodes a and e are full,
while the external p-nodes b, c, d, and f are non-full. The three
dotted pointers represent s pointers, which point to three PTs
containing prefixes 00*, 01*, and 0*, respectively. Note that,
since prefix 110100* in e is a sub-prefix 1101001* in a, we
have level(a) = 0 < 1 = level(e).
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Fig. 2. A 2-MPT

For a k-MPT T , the height of T , denoted by h(T ),
is max{level(v)| v is a node (p-node or s-node) in T}. To
traverse a path in T from the root (a p-node) to a leaf, the
current p-node requires k bits to branch out to the next p-
node until it arrives at the leaf. Hence, the longest path from
the root to an external p-node is bound by �W

k �. Moreover,
the s pointer of an external p-node may point to a prefix-
tree whose height is bounded by k. Therefore, the following
lemma holds.

Lemma 1: Let W be the length of the IP address and let T

be a k-MPT. Then, h(T ) ≤ �W
k � + k.

If we have string x of length l and string y of length n, the
concatenation of x and y, written xy, is the string obtained
by appending y to the end of x, as in x1 · · ·xly1 · · · yn. The
following properties are derived from the structural character-
ization of k-MPT.

Lemma 2: Let u be a p-node in a k-MPT T . Then, the
prefixes in u have the common sub-prefix of length kt, where
t is the length of the path from the root of T to u.

Proof: Let P = 〈v0, v1, . . . , vt〉, where vt = u, be the
path from the root, say v0, to u. Then, the concatenation of the
indices (binary strings of length k) of the branches (vi, vi+1)
for all 0 ≤ i ≤ t − 1 forms the common sub-prefix of the
prefixes in u. Since the index of each branch is a binary string
of length k and the path P has length t, the length of the
common sub-prefix equals kt. Q.E.D.

Lemma 3: Let u be a p-node in a k-MPT T . If the prefix-
tree PT of u exists, then the prefixes in PT have the common
sub-prefix of length kt, where t is the length of the path from
the root of T to u.

Proof: According to properties P1, P2, and P5 of the k-
MPT, the result can be shown by using a method similar to
that utilized to show Lemma 2. Q.E.D.

III. DYNAMIC ROUTER-TABLE OPERATIONS

A. Creating an empty k-MPT

To build a k-MPT T , we first use the following algorithm to
create an empty root node and then call an insertion algorithm
(described in Section III-B) to insert a new prefix. Both
algorithms use an auxiliary procedure called ALLOCATE P-
NODE, which allocates the memory space to be used by a
new p-node in O(1) time.

Algorithm MPT CREATE(T )
1: v := ALLOCATE P-NODE()
2: root(T ) := v

B. Insertion operation

In this subsection, we present the insertion algorithm for
k-MPT. The following definition is useful in our algorithms.

Definition 1: Let S = {(p0p1 . . . pl−1*, i, j)| pt ∈ {0, 1}
for 0 ≤ t ≤ l− 1 and 0 ≤ i ≤ j ≤ l− 1}. Define the function
GET : S → Z

+ as GET(p0p1 . . . pl−1, i, j) =
∑j

r=i pr2j−r.
For example, GET(0100000*, 0, 3) = (0100)2 = 4.

To insert a prefix p = p0p1 . . . pl−1* into a k-MPT, we start
from the root and move downwards until we find a p-node to
insert p. Suppose that v is the current p-node visited during this
process. If len(p) < k · (level(v)+1), then p will be inserted
into the PT of v. Otherwise, if len(p) ≥ k · (level(v) + 1),
we determine whether or not node v is full and execute the
following operation. Assume that the current content of v is
(t, p1(v), p2(v), . . . , pt(v), s pointer). If v is full (i.e., t = m)
and len(pm(v)) < len(p), we replace pm(v) with p, and
then insert pm(v) into childj(v), where j=GET(pm(v), k ·
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level(v), k · (level(v) + 1) − 1). The content of v is fur-
ther updated as (t, p1(v), p2(v), . . . , pm−1(v), p, s pointer).
However, if v is full and len(pm(v)) ≥ len(p), we insert p
into childj(v), where j=GET(p, k · level(v), k · (level(v) +
1) − 1). Otherwise, v is non-full, i.e., t < m, so we
just insert p into v. Now, the content of v is updated as
(t+1, p1(v), p2(v), . . . , pt(v), p, s pointer). The algorithm is
detailed below.

Algorithm MPT INSERT(p, v, level)
1: if v is null then
2: v :=ALLOCATE P-NODE()
3: if IN PT(len(p), level) then /∗ p should be inserted into

the PT of v ∗/
4: u := ALLOCATE S-NODE() /∗ allocate the storage

for a new s-node ∗/
5: PT INSERT(p, u, s pointer(v)) /∗ recall that

PT INSERT is the insertion algorithm for
prefix-trees ∗/

6: else if Is Full(v) then
7: if len(pm(v)) < len(p) then /∗ length of the last

prefix in v < length of p ∗/
8: replace pm(v) with p in v
9: arrange the prefixes in v in a non-increasing order

of their length
10: r := GET(pm(v), k · level, k · (level + 1) − 1)
11: v := childr(v)
12: MPT INSERT(pm(v), v, level + 1)
13: else
14: r := GET(p, k · level, k · (level + 1) − 1)
15: v := childr(v)
16: MPT INSERT(p, v, level + 1)
17: else
18: insert p into v
19: t(v) := t(v)+1 /∗ increase the number of the prefixes

in v ∗/
20: return

The initial call to insert a prefix p is
MPT INSERT(p, root, 0). Next, we describe how the
above algorithms work (see also Figure 3).

Example 1: To insert the prefix 010* into a 2-MPT with
m = 5, as shown in Figure 3(a), 010* can not be re-
placed with any prefix in p-node a (because len(000001*)=6>
3 = len(010*)) or inserted into the PT of a (because
len(010*)=3 > k · (level(a) + 1) = 2(0 + 1)). We obtain
the first two bits (01)2 via GET(010*,0,1) and then go to
child1(a), i.e., p-node c. Since IN PT(len(010*),1) is TRUE,

Algorithm IN PT(l, level)
1: if l < k · (level + 1) then
2: return TRUE
3: else
4: return FALSE

Algorithm IS FULL(v)
1: if v is full then
2: return TRUE
3: else
4: return FALSE

010* is inserted into the PT of c (see Figure 3(b)). Let us
consider inserting another prefix 0110100*. Since the length of
the last prefix 000001* in a is smaller than len(0110100*)=7,
000001* is replaced with 0110100* as shown in Figure 3(c).
Next, we insert 000001* into p-node b. Since p-node b is not
full, we insert the prefix into b (see Figure 3(d)).

The following lemmas are useful for demonstrating the
correctness of the MPT INSERT algorithm.

Lemma 4: After executing Algorithm MPT INSERT to in-
sert the prefixes, the length of each prefix in a p-node v will
be larger than that of each prefix in the PT of v.

Proof: Let p be an arbitrary prefix in v and let p′ be
an arbitrary prefix in the PT of v. Suppose, by contradiction,
that len(p) ≤ len(p′). Then, according to Lines 3–5 of
the algorithm and Algorithm IN PT, we have len(p′) <
k ·(level(v)+1). Hence, len(p) ≤ len(p′) < k ·(level(v)+1),
which means p is in the PT of v. This contradicts the
assumption that p is in v. Q.E.D.

Consider a p-node v in a k-MPT T . Let root(T ) be the root
of T . Any p-node u on the unique path from the root of T to
v is called an ancestor of v. If u is an ancestor of v, then v
is a descendant of u. (Every node is both an ancestor and a
descendant of itself.) If u is an ancestor of v and u �= v, then
u is a proper ancestor of v, and v is a proper descendant of
u. The descendent subtree rooted at v, denoted by T (v), is
the tree induced by descendants of v, rooted at v.

Lemma 5: Let x and y be two prefixes that are inserted
using Algorithm MPT INSERT, where y is a sub-prefix of
x. If x and y are both in p-nodes, then x and y are in the
same p-node; otherwise, the level of the p-node containing x
is smaller than the level of the p-node containing y.

Proof: We have the following scenarios.
Case 1: x is inserted before y. Let u be the current p-

node containing x. According to the algorithm,
all the proper ancestors of u must be full. More-
over, when y is inserted into a p-node using
MPT INSERT(y, root, 0), y must follow the down-
ward path from the root and encounter p-node u
because len(y) < len(x). There are three cases.

Case 1.1: u is full and len(pm(u)) < len(y).
According to Lines 6–12 of the algorithm,
y will also be inserted into u by replacing
pm(u). Hence, x and y are now in the same
p-node and the result holds.

Case 1.2: u is full and len(pm(u)) ≥ len(y).
According to Lines 13–16 of the algorithm
and by the assumption that y is in a p-node,
y will be inserted into a p-node whose level
is larger than that of u. Hence, the result
holds.
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Fig. 3. Illustration of how Algorithm MPT INSERT works. (a) The original 2-MPT. (b) 2-MPT after inserting prefix 010*. (c) To insert prefix 0110100*,
the last prefix in node a is replaced with prefix 0110100*. (d) The 2-MPT after inserting prefix 0110100*.

Case 1.3:u is non-full. According to Lines 17–19,
y will also be inserted into u. Hence, x and
y are now in the same p-node and the result
holds.

Case 2: x is inserted after y. Let v be the current node
containing y. According to the algorithm, all the
proper ancestors of v must be full and the length
of each prefix stored in any proper ancestor of v
must be at least len(y). When x is inserted using
MPT INSERT(x, root, 0), either x is replaced by
some prefix in a proper ancestor of v, or it follows
the downward path from the root until it encounters
a p-node v. In the former case, x will be in a p-node
whose level is smaller than level(v); and in the latter
case, we have the following three scenarios.

Case 2.1: v is full and len(pm(v)) < len(x).
According to Lines 6–12 of the algorithm, x
will be inserted into v by replacing pm(v).
If y = pm(v), then y will be inserted into
a proper descendant of v. Thus, the result
holds. Otherwise, if y �= pm(v), then x and
y will be inserted into the same p-node.

Case 2.2:v is full and len(pm(v)) ≥ len(x). This
leads to len(y) ≥ len(pm(v)) ≥ len(x),
which contradicts the fact that len(y) <
len(x) because y is a sub-prefix of x.

Case 2.3:v is non-full. According to Lines 17–19,
x will be also inserted into v. Hence, x and

y are now in the same p-node and the result
holds. Q.E.D.

Theorem 1: Algorithm MPT INSERT(p, root, 0) can cor-
rectly insert a prefix p into a k-MPT T .

Proof: The correctness follows from Lemmas 4–5 and the
correctness of Algorithm PT INSERT.

Q.E.D.
Theorem 2: Algorithm MPT INSERT(p, root, 0) can be im-

plemented to run in O(W ) time.
Proof: During the execution of the algorithm, we first

check whether the given prefix p should be inserted into
the PT of some p-node v, according to Lines 3–4. This
step can be done in O(1) time. If the condition holds, it
takes O(W ) time to insert a prefix into the PT according
to Line 5. Otherwise, we can check whether or not the
current p-node v is full in O(1) time. If v is full and
len(pm(v)) < len(p), we replace pm(v) with p and insert
p into the proper position in v and pm(v) into childj(v) with
j=GET(pm(v), k · level(v), k · (level(v) + 1) − 1), according
to Lines 6–12. Since m = O(k), the above operation takes
O(k) time without considering the recursive call. If v is full
and len(pm(v)) ≥ len(p), we insert p into childj(v) with
j=GET(p, k·level(v), k ·(level(v)+1)−1), according to Lines
13–16 of the algorithm. Without considering the recursive call,
this takes O(k) time. Otherwise, if v is non-full, the algorithm
only needs O(k) time to insert p into v. Since the number
of the p-nodes from the root to an external p-node in a k-
MPT is O(W

k ) and inserting a prefix into a PT of a p-node
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takes O(W ) time, the total time complexity of the algorithm
is O(k · (W

k ) + W ) = O(W ). Q.E.D.

C. Lookup operation

The steps of our search algorithm, called LOOKUP, are as
follows. Given the destination address DA, we search a k-
MPT starting from the root in a top-down manner. When a
p-node v is visited, we first search the prefixes of v starting
from p1(v) to determine whether the DA matches some prefix
in v. If such a prefix exists, then it is the longest matching
prefix according to Properties P1(b) and P4. Otherwise, we
search the corresponding prefix-tree PT and determine whether
it contains a matching prefix. If a matching prefix is found,
we store it and proceed with further iterations until an external
p-node is visited. The algorithm is detailed below.

Algorithm MPT LOOKUP(DA, v, level)
/∗ next hop is used to record the output port of the current
better matching prefix, and default route is used to record
the default output port. ∗/

1: level := 0
2: next hop := default route
3: while v �= null do
4: if there is a prefix in v that matches DA then
5: find the longest prefix pi(v) that matches DA
6: return port(pi(v))
7: else
8: next hop := PT LOOKUP(DA, s pointer(v))
9: r := GET(DA, k · level, k · (level + 1) − 1)

10: v := childr(v)
11: level := level + 1
12: return next hop

The initial call is MPT LOOKUP(DA, root, 0), where root
is the root of the given k-MPT. We use an example to explain
how the algorithm works (see also Figure 2).

Example 2: If DA=11010010, we begin searching the root
a and find that 1101001* matches this address. Hence, the
longest matching prefix is 1101001*. If DA = 00100110,
we begin searching the root, but find that no prefix matches
00100110. Based on s pointer(a), we go to the corresponding
PT and find a matching prefix 0*. We then store the output
port number of 0*, and take the first two bits 00 of DA
to go to child0(a) (i.e., p-node b). No prefix in b matches
00100110, but the corresponding PT has a prefix 00* that
matches 00100110. Since p-node b has no child, 00* is thus
the longest matching prefix.

Theorem 3: Algorithm MPT LOOKUP(DA, root, 0) can
correctly find the longest matching prefix for DA if such a
prefix exists.

Proof: To verify that the algorithm works correctly, we
use the following “loop invariant”:

• At the start of each iteration of the while loop in Lines
3–11, the output port of either the longest matching prefix
or the current best known matching prefix is found.

We need to show that 1) this invariant is true prior to the
first loop iteration; 2) each iteration of the loop maintains the
invariant; and 3) the invariant provides a useful property to
demonstrate the correctness when the loop terminates.

Initialization:The entire k-MPT is not searched prior to
the first iteration of the loop; next hop is set as
default route and the loop invariant holds trivially.

Maintenance:To check whether each iteration maintains
the loop invariant, we match DA with the prefixes
p1(v), p2(v), . . . , pt(v) stored in the current p-node
v. First, we consider the situation where DA matches
pi(v) for some 1 ≤ i ≤ t based on the following two
cases.

Case 1. next hop �= default route. Here, the
DA must match some prefix p′ in a PT
of a p-node u, where level(u) < level(v).
According to Property P1(d) of the k-MPT,
k · level(u) ≤ len(p′) < k · (level(u) + 1).
Note that len(pi(v)) ≥ k · level(v). Hence,
len(p′) < len(pi(v)) by len(p′) < k ·
(level(u) + 1) ≤ k · level(v) ≤ len(pi(v)).
Moreover, if there exists another matching
prefix p′′ in a p-node w or in the PT of w
with level(w) > level(v), then, according
to Lemma 4 and Properties P1(d) and P4 of
the k-MPT, len(p′′) < len(pi(v)). Based
on the above observations and the fact
that len(pi(v)) ≥ len(pi+1(v)) ≥ · · · ≥
len(pt(v)), pi(v) is selected as the longest
matching prefix and Line 6 of the algorithm
will return the correct output port.

Case 2. next hop = default route. Here, pi(v)
is the first matching prefix. If there is
another matching prefix p′′ in a p-node
w or in the PT of w with level(w) >
level(v), then, according to Lemma 4 and
Properties P1(d) and P4 of the k-MPT,
len(p′′) < len(pi(v)). Moreover, because
len(pi(v)) ≥ len(pi+1(v)) ≥ · · · ≥
len(pt(v)), pi(v) is selected as the longest
matching prefix and Line 6 of the algorithm
will return the correct output port.

Next, we consider the situation where the DA does
not match any prefix in a p-node. If the DA matches
a prefix in the PT of v, then Line 8 of the algorithm
will return the output port of the longest matching
prefix among the prefixes in the PT. Clearly, the
discovered matching prefix is currently the best one.
However, if the DA does not match any prefix in the
PT of v, then in Lines 9–11, we get the next k bits
to determine which child of v should be visited next.
Renewing v and incrementing level re-establishes
the loop invariant for the next iteration.

Termination: At the termination, v is null. By the loop
invariant, each action of renewing next hop will
keep the output port of the current best matching
prefix. Since there are no other nodes to be visited,
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Line 12 of the algorithm will return the output
port of the longest matching prefix if such a prefix
exists. Q.E.D.

Theorem 4: Algorithm MPT LOOKUP(DA, root, 0) can
be implemented to run in O(W 2

k ) time.
Proof: For each prefix p = p0p1 . . . pl−1*, we use an

interval Ip = [a, b] to represent p, where a =
∑l−1

r=0 pr2W−r−1

and b =
∑l−1

r=0 pr2W−r−1 +
∑W−1

r=l 2W−r−1. For example,
when W = 8, I001∗ = [32, 63]. Note that the DA matches
a prefix [a, b] if the DA’s decimal value is between a and b.
Hence, checking whether DA matches a prefix will take O(1)
time. In each iteration of the while loop, we can check whether
DA matches some prefix in the current p-node in O(k) time.
Since the number of the p-nodes from the root to an external
p-node in a k-MPT is O(W

k ) and lookuping a prefix in a PT
takes O(W ) time, the overall time complexity of the algorithm
is O((k + W ) · W

k ) = O(W 2

k ). Q.E.D.

D. Deletion operation

To delete a prefix p = p0p1 . . . pl−1*, we start from
the root, follow the downward path, and execute the
following operation. Suppose that v is the p-node being
visited currently. First, we utilize Algorithm IN PT to
check whether p is in the PT of v. If p is in the PT, we
simply delete p and release the storage allocation of the
corresponding s-node containing p. However, if p is not in
the PT of v, there are two possible scenarios depending
on whether p is in v or not. We first consider the case
where p is in v. Let (t, p1(v), p2(v), . . . , pt(v), s pointer(v))
be the current content of v such that pi(v) = p for
some 1 ≤ i ≤ t. If v is an external p-node, we
remove p from v and update the content of v as (t −
1, p1(v), p2(v), . . . , pi−1(v), pi+1(v), . . . , pt(v), s pointer(v)).
Note that when t − 1 = 0 and v has no PT, i.e.,
s pointer(v)=null, we only need to release the storage
allocation of v. However, if v is an internal p-node, we delete
p first. Let childr(v) for some 0 ≤ r ≤ 2k − 1 be the child
containing the longest prefix, say y, among the prefixes stored
in the children of v. We insert y into v and update the content
of v as (t, p1(v), p2(v), . . . , pi−1(v), pi+1(v), . . . , pt(v), y,
s pointer(v)). By executing the above operations, we
recursively call the deletion algorithm to delete y from
childr(v).

For the situation where p is not in v, we get the desired k bits
from p to branch out from some child of v, and recursively call
the deletion algorithm. The complete algorithm is presented in
Algorithm MPT DELETE(p, v, level).

The initial call for deleting a prefix p is
MPT DELETE(p, root, 0).

Example 3: The steps of the MPT DELETE algorithm are
as follows. First, we delete the prefix 01* from the 2-MPT
shown in Figure 4(a). Since 01* is not in p-node a or in the PT
of a, we get the first two bits (01)2 and go to child1(a) = c.
However, 01* is in the PT of c, so we delete it from the PT
(see Figure 4(b)). Next, we delete prefix 110100* from the
2-MPT shown in Figure 4(b). Since 110100* is not in p-node
a or in the PT of a, we get the first two bits (11)2 and go to

Algorithm MPT DELETE(p, v, level)
/∗ This algorithm uses two auxiliary procedures, FREE S-
NODE and FREE P-NODE, which free the storage allocation
of an s-node and a p-node, respectively, in O(1) time. ∗/

1: if v is null then
2: output “p is not found”
3: if IN PT(len(p), level) then
4: PT DELETE(p, s pointer(v))
5: FREE S-NODE

6: else if p is in v then
7: delete p from v
8: if v is an external p-node then
9: t(v) := t(v) − 1 /∗ decrease the number of the

prefixes in v ∗/
10: if t(v) = 0 and s pointer(v)=null then
11: FREE P-NODE(v)
12: else
13: find a prefix y in childr(v) s.t. len(y) =

max{len(p)| p ∈ childi(v) for 0 ≤ i ≤ 2k−1}
14: insert y as the last prefix in v
15: v := childr(v)
16: MPT DELETE(y, v, level + 1)
17: else
18: r := GET(p, k · level, k · (level + 1) − 1)
19: v := childr(v)
20: MPT DELETE(p, v, level + 1)
21: return

child3(a) = e. We find that 110100* is in p-node e, so we
delete it (see Figure 4(c)). As shown in Figure 4(d), 110100*
is replaced with prefix 110110* in p-node f , and 110110* is
deleted from f . As p-node f is now empty, we release its
storage allocation. Finally, we consider to delete 0110100*
from p-node a, as shown in Figure 4(d). The intermediate 2-
MPT is shown in Figure 4(e). We select the longest prefix
among the prefixes stored in the children of a. The length
of the longest prefix equals 6, but there are many prefixes of
length 6 stored in the children of a. Without loss of generality,
we assume that 000001* in p-node b is selected. We then insert
it as the last prefix in a and delete it from b (see Figure 4(f)).
Note that since the PT of v still exists after deleting 000001*,
we do need not to release the storage allocation of b.

The following lemmas are useful for demonstrating the
correctness of the deletion algorithm.

Lemma 6: After using Algorithm MPT DELETE

(z, root, 0) to delete a prefix z from a p-node v, each
prefix in v will still be longer than any prefix in the PT of v.

Proof: According to Lines 12–16 of the algorithm, the
longest prefix in some child of v may be moved to v. Let x be
an arbitrary prefix in the PT of v and let y be the prefix moved
up to v. Since len(x) < k · (level(v) + 1) and k · (level(v) +
1) ≤ len(y), len(x) < len(y). Q.E.D.

Lemma 7: Let x and y be two prefixes in a p-node and
let y be a sub-prefix of x. Then, after using Algorithm
MPT DELETE(z, root, 0) to delete a prefix z /∈ {x, y}, one
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Fig. 4. The operations of the MPT DELETE algorithm. (a) The original 2-MPT. (b) 2-MPT after deleting prefix 01*. (c) Prefix 110100* is deleted from
p-node e. (d) Prefix 110110* is moved to node e and the storage allocation of f is released. (e) Prefix 0110100* is deleted from p-node a. (f) The longest
prefix, 000001*, in the children of b is moved to node a such that p-node b is now empty.

of the following two conditions will hold: (1) x and y will be
stored in the same p-node such that x will appear before y; or
(2) the level of the p-node containing x will be smaller than
the level of the p-node containing y.

Proof: Let u and v be two p-nodes contain-
ing x and y, respectively, before executing Algorithm
MPT DELETE(z, root, 0). We have the following scenario.

Case 1: u = v. Since len(y) < len(x), x appears before
y in u. According to the algorithm, there are two
sub-cases.

Case 1.1:The first prefix p1(u) is moved up to the
parent of u. If x = p1(u), then x is moved to
the parent of u after the algorithm has been
executed; thus, Condition (2) holds. How-

ever, if x �= p1(u), then x and y will still be
in the same p-node after the algorithm has
been executed. Hence, Condition (1) holds.

Case 1.2:The first prefix p1(u) is not moved up to
the parent of u. In this sub-case, x and y
are still in u and retain their relative order.
Hence, Condition (1) holds.

Case 2: u �= v. By Lemma 5, level(u) < level(v). After
executing the algorithm, either level(u) < level(v)
still holds or level(u)+1 = level(v) and y is moved
up to u. In the latter case, since len(x) > len(y),
Condition (1) holds according to Line 14 of the
algorithm. Q.E.D.

Theorem 5: Algorithm MPT DELETE(p, root, 0) can cor-
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rectly delete a prefix p from a k-MPT.
Proof: The correctness follows directly from the algo-

rithm and Lemmas 6 and 7. Q.E.D.
Theorem 6: Algorithm MPT DELETE(p, root, 0) can be

implemented to run in O( 2kW
k ) time.

Proof: During the execution of the algorithm, we first
check whether p is in the PT of the current p-node v (Lines
3–5) in O(1) time. If p is in the PT, it takes O(W ) time to
delete it. Otherwise, we check whether p is in v and delete it
in O(k) time. If p is in v, then the corresponding operations
(without regard to a recursive call) described in Lines 6–16 of
the algorithm can be implemented in O(2k) time because we
find the longest prefix among the prefixes in O(2k) children
of v. Otherwise, p is not in v. The corresponding operations
(without regard to a recursive call) described in Lines 17–20
of the algorithm can be implemented in O(k) time. Therefore,
the total complexity is O(2k(W

k ) + W ) = O( 2kW
k ). Q.E.D.

IV. INDEX MULTI-PREFIX TRIE

We now present a new data structure called the k-stride
Index Multiple Prefix Tree (k-IMPT for short), which is based
on the k-MPT. The k-IMPT partitions a k-MPT into several
smaller k-MPTs to reduce its height. This idea has been used
in many routers [14]. The partitioned k-MPTs are merged
through the index table tab[00 . . . 0︸ ︷︷ ︸

α

, 00 . . . 1︸ ︷︷ ︸
α

, · · · , 11 . . . 1︸ ︷︷ ︸
α

].

Given a fixed length α, the index table has 2α entries such that
the entry tab[b0b1 . . . bα−1] contains a pointer, which indicates
the k-MPT that stores the prefixes with the common sub-
prefix b0b1 . . . bα−1 (see Figure 5). To execute the router-table

k-MPT

Index Table
00000000

11111111

k-MPT

k-MPT
�

Fig. 5. A k-IMPT

operations (lookup, insertion, and deletion) in a k-IMPT, we
first match the index table and then execute the operations
in the corresponding k-MPT. For example, if we insert a
prefix p into a k-IMPT, we first get the α bits of p to
determine the index value. If len(p) ≥ α, we can insert p
into the corresponding array. However, if len(p) < α, then
p corresponds to more than one index value. For instance,
assume that p =101000* and α = 8 (i.e., the first eight
bits of a prefix represent the index value). Because 101000*
contains 10100000, 10100001, 10100010, and 10100011, the
prefix p =101000* must be inserted into the k-MPTs in-
dicated by tab[10100000], tab[10100001], tab[10100010], and
tab[10100011], respectively. Since storing duplicate prefixes
is inefficient, we must choose an α value that can reduce the

storage requirement. The algorithms for lookup and deletion
work similarly.

Definition 2: Let S = {(p0p1 . . . pl−1*, α)| pi ∈
{0, 1} for 0 ≤ i ≤ l − 1 and 0 ≤ l <
α}. Define the function TAKE PREFIX ENDPOINT :
S → Z

+ as TAKE PREFIX ENDPOINT(p0p1 . . . pl−1, α) =∑l−1
r=0 pr2α−r−1 +

∑α−1
r=l 2α−r−1.

For example, TAKE PREFIX ENDPOINT(101000*, 8) =
(10100011)2 = 163. The algorithms for the lookup, insertion,
and deletion operations for a prefix p = p0p1 . . . pl−1* on the
k-IMPT are detailed below.

Algorithm IMPT LOOKUP(α, p,DA)
1: s := GET(p, 0, α − 1)
2: MPT LOOKUP(DA, tab[s] → root, 0)

Algorithm IMPT INSERT(α, p)
1: s := GET(p, 0, α − 1)
2: if len(p) ≥ α then
3: if (tab[s] → root) is null then
4: MPT CREATE(tab[s])
5: MPT INSERT(p, tab[s] → root, 0)
6: else
7: e := TAKE PREFIX ENDPOINT(p, α)
8: for i := s to e do
9: MPT INSERT(p, tab[i] → root, 0)

Algorithm IMPT DELETE(α, p)
1: s := GET(p, 0, α − 1)
2: if len(p) ≥ α then
3: MPT DELETE(p, tab[s] → root, 0)
4: else
5: e := TAKE PREFIX ENDPOINT(p, α)
6: for i := s to e do
7: MPT DELETE(p, tab[i] → root, 0)

V. EXPERIMENTAL RESULTS

We conducted experiments on the benchmark IPv4 prefix
database AS4637, dated November 21, 2007 [1]. It contains
219,581 prefixes. We implemented the k-MPT and k-IMPT for
various k, as well as for other data structures (for comparison
with k-MPT and k-IMPT) using C++. All the experiments
were performed on a 3.40GHz PC with a 512MB memory.
Figure 6 shows the total prefix-population by the prefix length.
In Section V-A, we select proper k and m for k-MPT and k-
IMPT, and analyze their performance. Then, in Section V-B,
we compare the proposed data structures with other data
structures.
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TABLE I
AVERAGE LOOKUP TIME (# CLOCK CYCLES) OF k-MPTS WITH DIFFERENT k AND m

m \ k-MPT 1-MPT 2-MPT 3-MPT 4-MPT 5-MPT

k 5953 5440 5529 5788 6116
k + 1 6029 5514 5560 5642 6223
k + 2 6362 6075 5646 5760 6162
k + 3 6608 5872 6124 5804 6477
2k 6045 5643 5726 5842 6418

2k + 1 6327 5395 5817 5902 7056
2k + 2 6621 6062 5935 5949 6549
2k + 3 7436 6232 6012 6016 6577

3k 6337 6777 6246 6107 6671
3k + 1 6621 6471 6124 6149 6763
3k + 2 7537 6370 6265 6233 6863
3k + 3 7855 6890 6364 6420 7007

TABLE II
AVERAGE UPDATE TIME (# CLOCK CYCLES) OF k-MPTS WITH DIFFERENT k AND m

m \ k-MPT 1-MPT 2-MPT 3-MPT 4-MPT 5-MPT

k 9805 6999 6741 6342 6269
k + 1 9553 7016 6986 6137 6273
k + 2 9743 7193 6889 6157 6382
k + 3 9515 7478 7230 6503 6365
2k 9688 7699 7080 6494 6434

2k + 1 9588 6965 7117 6156 7004
2k + 2 9435 7372 7315 6257 6593
2k + 3 9408 7509 7284 6150 6555

3k 9545 7389 7378 6103 6660
3k + 1 9459 7583 7475 6418 6634
3k + 2 9429 7502 7822 6142 6711
3k + 3 9305 8012 7520 6128 6786
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Fig. 6. Prefix-population in AS4637

A. Selecting k and m for MPT and IMPT

Since the number m = O(k) for prefixes in the p-node
of MPT may affects performance, we need to select proper
values appropriate for k and m. The experimental results
for the average lookup time and average update time for k-
MPT with different k and m based on AS4637 are shown
in Table I and Table II, respectively. We insert and delete
5,000 prefixes in AS4637 to compute the average update time.
Since the length of each prefix in AS4637 is at least 8, we
set α = 8 to avoid duplicate storage of the same prefix in

k-IMPT. As we can see in Table I, it can achieve the best
average lookup time when k = 2 and m = 2k + 1. For
average update time shown in Table II, 4-MPT has better
performance. Moreover, it can achieve the best average update
time when k = 4 and m = 3k. Since (average update time
on k = 4 and m = 2k + 1)−(average update time on k = 4
and m = 3k) = 6156 − 6103 = 53 is small; hence, we
select m = 2k + 1 for comparing k-MPT with other data
structures in Section V-B. On the other hand, the k-IMPT has
similar results. The tables of average lookup time and average
update time for k-IMPT with different k and m are shown at
http://algorithm.csie.ncku.edu.tw/network/MPT.htm.

We select m = 2k+1 for 1 ≤ k ≤ 5 to compare the storage
requirement by the experiment. The experimental results for
the number of nodes, the height, and the storage requirements
for building k-MPT and k-IMPT based on AS4637 are shown
in Table III. Note that for only one k-MPT, the maximum
height and average height are the same. On the other hand,
since one k-IMPT T may contain several k-MPTs, the max-
imum height of T is defined as max{h(T ′)| T ′ is a k-MPT
contained in T}; and the average height of T is the average
height of all the k-MPTs in T . As shown in Table III, when k
increases, the height decreases, but more storage is required.
The reason is that larger k can store more prefixes in a p-
node, which implies that more storage is required. To achieve
a better performance, we need to consider the height, operating
time, and storage requirement when selecting k. As shown in
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TABLE III
REQUIREMENTS FOR BUILDING k-MPTS AND k-IMPTS BASED ON AS4637

# Nodes Max Height Avg. Height Storage (KB)
# p-nodes # s-nodes

101353
1-MPT

88486 12867
24 24 1566

102236
2-MPT

66454 35782
13 13 2070

125994
3-MPT

59428 66566
10 10 2714

152340
4-MPT

60502 91838
9 9 3580

221827
5-MPT

51731 170096
9 9 4158

101080
1-IMPT

88374 12706
24 19.4 1562

153037
2-IMPT

66305 35485
13 10.74 2064

125207
3-IMPT

59199 66008
10 8.38 2702

113394
4-IMPT

60155 91186
9 7.64 3558

146000
5-IMPT

51419 168243
9 7.96 4158

Table III, 2-MPT requires less storage than 4-MPT. From the
above observations, we conclude that the lookup performance
of 2-MPT is better, and its average update time is just a little
higher than that of 4-MPT. Therefore, we compare 2-MPT
with the other data structures in Section V-B. We have similar
observations on k-IMPT and select 2-IMPT with m = 2k + 1
to compare it with the other data structures in the next section.

B. Comparison with other data structures

Table IV compares the number of nodes, the number
of dummy nodes, the height, and the storage requirement
when implementing the AS4637 router-table with the fol-
lowing structures: a binary trie, an LC-trie [18], a modi-
fied LC-trie [20], a prefix-tree [3], a Dynamic Tree BitMap
(DTBM) [30], Fixed-Stride Trie (FST) [22], 2-MPT, and 2-
IMPT. For the multi-bit trie based structure, we adopted the
k-FST, a fixed-stride trie with the level k. We applied the
algorithm proposed by Sahni and Kim [22] to compute the
cost and the best stride of k-FST for 3 ≤ k ≤ 7. In
our experiment, 7-FST is superior than the other k-FSTs
(3 ≤ k ≤ 6) with respect to the worst-case lookup time,
number of nodes, number of dummy nodes, storage and update
time. Moreover, the average lookup time is competitive to
other choices of k. Therefore, we select 7-FST to compare
with the proposed data structures. Note that the binary trie,
the LC-trie, the modified LC-trie, DTBM, and 7-FST contain
dummy nodes, which increases the storage cost substantially.
Moreover, the binary trie, the LC-trie, the modified LC-trie,
the prefix-tree, DTBM, and 7-FST have more nodes than our
data structures. The storage requirement of the LC-trie and the

modified LC-trie need to store information about the next hop,
the prefix, as well as skip and branch operations in each node;
hence, their storage requirements are greater than those of the
other structures. Specifically, the height (both the maximum
height and the average height) of 2-MPT (2-IMPT) is less
than that of the other structures except for DTBM and 7-
FST, which reduces the number of memory accesses required
for router-table operations. Although the height of DTBM (7-
FST) is smaller than our data structures, the lookup time of
our data structures is competitive to DTBM and 7-FST in the
experiment.

Since each memory access requires a great deal of time,
the number of memory accesses affects the operating time.
Table V, Figure 7, and Figure 8 compare the performance of
the lookup operations of the different data structures. Both
2-MPT and 2-IMPT require fewer memory accesses than the
other structures except for DTBM and 7-FST, which implies
that the average lookup time also shorter than the compared
structures. One key reason is that our data structures can return
the longest matching prefix when it is found in an internal
node, without going to a leaf to return. Although the DTBM
(respectively, 7-FST) requires fewer memory accesses than 2-
MPT (respectively, 2-MPT and 2-IMPT), 2-MPT and 2-IMPT
are faster in terms of lookup time. The reasons are as follows.
(1) When a node v is visited in the DTBM, an auxiliary
function is called to determine whether there is a matching
prefix matches the destination address. If such a prefix exists,
then it will be stored as the currently best matching prefix.
Moreover, the corresponding next hop is also kept. (2) When
a node is visited in the 7-FST, the corresponding stride need to
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TABLE IV
STRUCTURE COMPARISON OF DIFFERENT DATA STRUCTURES

# Nodes

# p-nodes # s-nodes
# Dummy Nodes Max. Height Avg. Height Storage (KB)

Binary Trie 523793 305408 32 32 2558
LC-Trie 366413 27554 14 14 3847

Modified LC-Trie 366413 27554 14 14 3847
Prefix Tree 219581 0 29 29 2144

DTBM 226673 51893 10 10 2012
7-FST 673576 379155 7 5.2 2631
2-MPT 102236

66454 35782
0 13 13 2070

2-IMPT 101790

66305 35485
0 13 10.74 2064

TABLE V
LOOKUP TIME AND THE NUMBERS OF MEMORY ACCESSES FOR DIFFERENT DATA STRUCTURES

Time (# Clock Cycles ) # Memory Accesses
Avg. Worst Avg. Worst

Binary trie 7445 1919241 21.65 32
LC-trie 13352 2385763 10.94 29

Modified LC-trie 12983 1748730 7.87 16
Prefix-tree 7107 1525282 20.64 31

DTBM 10396 1301537 7.47 11
7-FST 6199 1267035 4.06 7
2-MPT 5395 1203166 7.61 25
2-IMPT 5334 1245514 7.07 25

Avg. Lookup Time
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Fig. 7. The average lookup time and worst-case lookup time for different data structures

be computed in order to go to the next node. These operations
take longer time. Table VI, Figure 9, and Figure 10 show
the performance comparison of updating 5,000 prefixes in
AS4637 with different dynamic data structures. Since the LC-
trie, modified LC-trie, and FST are static, the whole table must
be reconstructed when inserting or deleting a prefix; hence, the
above three data structures are excluded from the comparison.
As shown in the table and figures, both 2-MPT and 2-IMPT
require shorter update time. Since the binary trie may insert
or delete a longest prefix, the memory access is 32 for IPv4
(128 for IPv6). Therefore, the update time of the binary trie
is larger than our data structures. Moreover, the update time
and the number of memory accesses for the binary trie and
the prefix-tree are almost the same because, in both structures,
the insertion and deletion of many routing entries in AS4637

often follow downward paths to leaves in order to execute
the operations. Note that the update time and the number
of memory accesses for the binary trie and the prefix-tree
are larger than 2-MPT and 2-IMPT. Although the number of
memory accesses of DTBM is less than 2-MPT and 2-IMPT,
the update time of DTBM is larger than 2-MPT and 2-IMPT.
The reason is that DTBM needs more complex operations to
perform a deallocation when deleting a prefix.

VI. CONCLUDING REMARKS

We have proposed two new data structures, MPT and IMPT,
for dynamic router-table design. Since the structures do not
contain dummy nodes, they require less storage and they
are not as high as other trees. In addition, because of the
lower height, they require fewer memory accesses for router-
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Fig. 8. The average number memory accesses and the worst-case number of memory accesses for different data structures

TABLE VI
THE UPDATE TIME AND THE NUMBER OF MEMORY ACCESSES FOR DIFFERENT DATA STRUCTURES

Time (# Clock Cycles) # Memory Accesses
Avg. Worst Avg. Worst

Binary trie 7889 1723333 19.25 32
Prefix-tree 8640 895900 18.3 30

DTBM 7975 148062 5.39 9
2-MPT 6965 118847 8.49 16
2-IMPT 7213 120020 8.48 54

Avg. Update Time
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Fig. 9. The average update time and the worst-case update time for different data structures

table operations. The simulation results reveal that our data
structures are superior to those trie-based data structures in
respect of storage, IP lookup time, and update time.

Table VII summarizes the structural properties of different
trie-based data structures. The binary trie, the (modified) LC-
trie and DTBM contain dummy nodes, so it is necessary to
go to a leaf to find the longest matching prefix. Our proposed
data structures do not suffer from this limitation.

Our future work attempts to reduce the number of memory
accesses and the memory requirement of the proposed data
structures while preserving fast updating.
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